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SUMMARY 
Four alternative theoretical treatments of ‘displacement 

thickness ’, and, generally, of the influence of boundary layers 
and wakes on the flow outside them, are set out, first for two- 
dimensional, and then for three-dimensional, laminar or turbulent, 
incompressible flow. They may be called the methods of ‘flow 
reduction ’, ‘ equivalent sources ’, ‘ velocity comparison ’ and 
‘ mean vorticity ’. 

The principal expression obtained for the displacement 
thickness 6, in three-dimensional flow may be written 

if, as orthogonal coordinates ( x ,  y )  specifying position on the 
surface, we choose x as the velocity potential of the external 
flow, and y as a coordinate, constant along the external-flow 
streamlines, such that h, dy is the distance between ( x , y )  and 
(x, y + dy) ; and if also 6, and 6, are the streamwise and transverse 
‘ volume-flow thicknesses ’ 

2 is the distance from the surface, u and v are the x andy components 
of velocity, and u takes the value Ujust outside the boundary layer. 

1.  INTRODUCTION 
A boundary layer causes the irrotational flow outside it to be that about, 

not the solid surface itself, but a surface displaced into the fluid through 
a distance a,, the ‘ displacement thickness ’ of the layer, whose value at any 
point of the surface can be calculated, to a first approximation, directly 
from the velocity profile of ordinary boundary-layer theory. 

The  displacement-thickness theory is well understood in two-dimensional 
flows, but it has been studied only a little in the general three-dimensional 
case (Moore 1953 ; Dunn & Kelly 1954). A specially useful formula for 6, 
is omitted from these papers, which select one particular method for attacking 
the problem; actually, at least four are available, all of which help to 
illuminate it, some making the theory more rigorous-less of a ‘hunch’  
-than do most published presentations. For these reasons, the author 
felt justified in compiling a new account of the subject. 
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The  discussion is limited to  the case of incompressible flow, in order 
to achieve the utmost clarity of presentation. Note that, although some 
generality is lost by this, much is gained in return, since the arguments 
t hen  apply without change both in steady and unsteady flow, and, also, 
both in laminar and turbulent flow, provided that in the latter case all words 
like ' flow ', ' velocity ', ' vorticity ', etc. are taken to signify mean values, 
in the usual turbulence-theory sense. (This is because all the equations 
used are linear in those quantities.) T o  make up in part for the restriction, 
we state without discussion, in equation (22), the form which the principal 
formula for 6, takes in the case of steady compressible laminar flow. 

2. TWO-DIMENSIONAL FLOW 

The  simple case of two-dimensional flow is first used to illustrate the 
four main approaches to incompressible-flow displacement-thickness 
theory, which we may call the methods of ' flow reduction .', ' equivalent 
sources ', ' velocity comparison ' and ' mean vorticity '. 

2.1. Flow reduction 
With x as distance, measured along the surface, from the point of 

attachment of the boundary layer, z as distance from the surface, u and w 
as the corresponding velocities, and U as the value of u just outside the 
boundary layer, the difference U - u  represents the reduction in flow 
velocity due to the presence of rotational flow in the boundary layer. The  

total reduction in volume flow per unit span is J -" ( U - u )  dx. 

Now, between the surface and any streamline just outside the boundary 
layer, there must be a constant volume flow per unit span. This will be 
so if the flow reduction inside the layer is compensated for by an outward 
displacement of such a streamline through a distance 6, (which produces 
a flow increase U6,, since the velocity is U in the region of streamline 
displacement), provided that 

n 

11) 

This displacement of the irrotational-flow streamlines implies that they 
can be regarded as streamlines of the irrotational flow around a surface 
displaced into the fluid through a distance 6,, as stated in 9 1. 

We may observe that streamlines in the wake are similarly displaced, 
and behave as if the wake were a solid slab (joined to the body), of thickness 

6, = 'jm ( U - u )  dz, u - 0 0  

with irrotational flow around it. 
6, decreases downstream at first, since the ' momentum thickness ' 

I n  the wake (at least in steady flow), 
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must remain approximately constant ; far downstream, a,, like a,, tends 
to D/(pU2),  where D is the drag per unit span and p the density. 

2.2. Equivalent sources 
The  effect of the boundary layer on flow about aerofoils, particularly 

those derived by conformal mapping, can often be represented most 
conveniently, not by an effective thickening of the aerofoil, but by means 
of an equivalent surface distribution of sources. To derive this, we consider 
the form of the normal velocity w just outside the boundary layer. I n  this 
region we have 

since x is large enough for U - u  to vanish, and hence for z to be replaced 
by co in the last integral in accordance with the conventions of boundary- 
layer theory. 

In  (4), the first term is that which would be present in the irrotational 
flow around the body, and the second is an additional outflow due to  the 
boundary layer. This additional outflow is exactly ‘ as i f ’  the irrotational 
flow around the body were supplemented by the effect of a surface 
distribution of sources, whose strength (volume flow rate) per unit area is 

The  same considerations are applicable in the wake, where however m 
is negative, so that we may consider the rear dividing streamline of the 
irrotational flow as dotted with sinks. These produce a slight acceleration 
in the mainstream flow about (for example) a flat plate at zero incidence, 
which is exactly responsible for the addition, 8*2/R, to  the Blasius expression 
2.64/R1I2 for laminar-flow drag coefficient, which was found by Kuo (1953). 

Now, the ‘new ’ fluid emitted at the sources just described would fill 
a region, adjacent to the body, of thickness 6,; for the flow of ‘new’ fluid 
past any point (with velocity U )  must equal the total outflow from the part 
of the surface between that point and the point of attachment, and this is 

!: m dx = Ua1 

per unit span. But the external flow can be regarded as the irrotational 
flow about the surface of separation between the fluid from upstream 
and the ‘ new ’ fluid from the sources (as in the theory of Rankine bodies), 
and this has been shown to be a surface displaced into the fluid through a 
,distance 6,. 

F.M. Z B  
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2.3. Velocity comparison 
The  'velocity comparison' method has some similarity to that just 

discussed, but approaches more directly the problem of finding a surface 
z = 6,(x), the irrotational flow about which is the same as the flow outside 
the given boundary layer. The  boundary condition for such an irrotational 
flow is 

since to the required approximation the change in U may be neglected 
when multiplied by 6;(x). Hence, for values of x just outside the boundary 
layer (but small on the scale of the irrotational flow), 

w = U6;(x) at z = 6,(x), (7 1 

aw 
w + (w)z=s,+ - ax (2- 6,) = U q ( x ) -  dU 

dx 
- ( z  - 6,). 

Comparing this with the actual form (4) of w just outside the layer, we 
obtain a differential equation 

- ( U 6 , ) = & /  d d "  ( U - u ) d z ,  

dx U 
(9) 

of which equation (1) represents the only solution satisfying U6, = 0 at 
the point of attachment. 

2.4. Mean ziorticity 
A fourth, and perhaps most rigorous, approach regards the problem 

as that of finding the flow induced, in the presence of the body, by a given 
distribution of vorticity-or one that is, at least, approximately known. 
By ' induced flow ' in general, one means the unique velocity field, with the 
given vorticity (and velocity at infinity), which has zero normal velocity 
at the surface; but the actual vorticity distribution is one of those, for 
which also the induced tangential velocity vanishes at the surface. 

The idea of the method is to replace the vortex layer by a vortex sheet,, 
at the' mean distance 

jE x7 dz j a  Z(au/az) d .  j5 ( U - u )  dz 
0 

= 6, (10). - - - . o  - 0 

jE dz ' j a  (aulaz) dz U 
0 0 

of vorticity from the surface. Here, the boundary-layer approximation 

au aw . au 
ax ax ax 7 = - -  - 7 -  

to the vorticity 7 has been used. T h e  error in the induced flow, produced 
by such a redistribution of the vorticity at any station in the boundary layer, 
is shown below to be of the order of the square of 611 (ratio of boundary-layer 
thickness to body dimension) except near that station itself (where by 
'near ' we mean 'within a distance of order 6 '). It follows that the 
replacement reduces the flow to rest (if terms of order (S/Z)z be neglected) 
at any point between the vortex sheet and the body, since the flow induced 
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at the point by ‘ far ’ vorticity is unaltered, and the effect of shifting all the 
‘ near ’ vorticity that formerly lay between the point and the surface to the 
other side of the point simply reduces the velocity there to zero. Since, 
therefore, the fluid is at rest on one side of it, the vortex sheet is a stream 
surface, and the flow outside it is the irrotational flow around that surface. 

The  method gives just as directly the ‘equivalent source’ result. 
For two parallel line vortices with equal and opposite circulations K 
and - K are equivalent to a distribution of normal doublets, of uniform 
strength K per unit area, in the strip bounded by the two lines. Hence the 
flow differs from that got by replacing all the vorticity in the layer by equal 
vorticity on the solid surface (where it has no effect, being cancelled by its 
image) by the flow induced by a volume distribution of doublets, parallel 
to the surface, whose strength per unit volume at a distance z from the 
surface is 

7 dz = U - U ,  (12) .r$ 
since all vorticity farther from the surface than z contributes. 

if they lay on the surface, with strength 
T o  a first approximation, the effect of all these doublets is the same as 

J -( U -  u )  dz  (13). 
U 

per unit area. But such a distribution of tangential doublets on the surface 
is equivalent to  a distribution of sources, of strength 

Ss ( U - u )  dz 
0 

per unit area, as in (5). 
Note that the error in replacing the doublets at any station N by a doublet 

on the surface is equivalent, except very nearby, to the flow induced by a 
quadrupole of strength 

cu 1 x(U-u)dz ,  (15 1 
0 

which is of order (6/Z)2. The  same estimate can be similarly derived for the 
error in the original replacement of the vortex layer by a vortex sheet at 
the mean distance 6, of vorticity from the surface. 

3. THREE-DIMENSIONAL FLOW 

Each of these approaches to displacement-thickness theory will now be  
applied in the general three-dimensional case. We take z as distance from 
the surface as before, and (x,y) as any orthogonal system of coordinates 
on the surface, such that the distance between the points (x ,y)  and 
(x+ dx, y)  is h, dx, while that between (x, y) and (x, y + dy)  is h, dy. 
The velocities in the x,y, x directions are u,  ZI, w, and the values of u and w 
just outside the boundary layer are U and V. 

2 B Z  
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In  most of the methods it is a real advantage to choose ( x , y )  as ‘ external- 
flow coordinates ’-that is, such that the curves y = const. are streamlines 
of the external flow, which in symbols means that V = 0. This implies 
that the curves x = const. are equipotentials, which suggests choosing x as 
the velocity potential of the external flow, in which case h, = U-l. However, 
we shall not require that this precise choice for x, or any particular choice 
for y ,  be made. 

T o  fix the ideas, we assume throughout that the boundary layer attaches 
itself to the surface at a stagnation point of the external flow, from which 
all the external streamlines issue. We take x = 0, without loss of generality, 
at that point. The  assumption must be correct on a smooth surface, except 
in unusual circumstances like those of two-dimensional flow, when 
attachment occurs at a whole line of stagnation points (although, in two- 
dimensional theory, such lines normal to the flow plane are usually referred 
to as ‘ points ’) ; and even then we can take x = 0 at each, since such a line 
is necessarily an equipotential. 

Note that cases when the external streamlines on the surface fall into 
two groups, those of each group issuing from different stagnation points 
(such a pair of ‘nodes’ of the external streamlines being commonly 
separated by a ‘ saddle-point ’), are not really excluded, since the two 
parts of the surface covered by the two groups of streamlines can be treated 
separately. 

On the other hand, on surfaces with cusped edges (including the case 
of an ideally thin sharp-edged plate), when boundary-layer attachment 
occurs at the edge, it is possible for the streamline y = const. to become 
attached for a value of x, say x = x,(y),  varying arbitrarily with y. We 
content ourselves with stating that all the formulae of $ 3  can be proved 
t o  be still correct in such cases if the lower limit x = 0, wherever it occurs 
in an integral, is replaced by x,(y). 

3.1. Flow reduction 
Consider now the portion of surface lying between two neighbouring 

external streamlines, with the constant values of y on each differing by dy. 
The  boundary layer reduces the volume flow in the x-direction over this 
portion of surface by 

( h ,  dy)  jm ( U - u )  dx. 
0 

If the external streamlines are displaced outwards by an amount a,, this 
makes a compensating increase ( h  d )US, in the said volume flow. 

However, in the general three-dimensional case, these two cannot be 
simply equated. This is because the boundary layer causes some flow at 
right angles to the external streamlines. The  flow across any one of them, 
between the point of attachment and the point (x,y), is 

g . y  
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This reduces the volume flow, between streamlines specified by y-coordinates 
y + dy and y ,  by an amount equal to the dzflerence between the values of (17) 
on the two streamlines, namely 

($1: h, dx ir v dz) dy. 

Accordingly, part of the total flow reduction (16) is associated with this 
cross-flow effect, rather than with displacement of the external streamlines, 
whence (h,  dy)U6, must be the difference of (16) and (18), giving 

( U - u )  dz- - - a 
h, dx 1; v dz. 

Uh, aY 0 

In  terms of the streamwise and transverse ' volume-flow thicknesses ', 
defined as 

we have 

6, = 6,- - - a r Uh,6, dx. 
uh, aY 0 

If x is taken as the velocity potential of the external flow, the product Uh, 
in (21) is 1, which further simplifies the equation. 

The  same method shows that the expression analogous to (21) in the 
case of steady compressible laminar flow is 

6, = 6,- - PUh, & a $PUhX6,dx, (22) 

where P is the value of the density p just outside the boundary layer, and 
6,, 6, are the ' mass-flow ' thicknesses 

1 "  1 "  
6 = - 1 (PU-pu)dz,  6 = -1 pvdz. 

PU 0 zI pu 0 

We shall not, however, consider compressible flow any further. 

3.2. Equivalent sources 

coordinates, namely 
For this method we need the equation of continuity in boundary-layer 

from which it follows that, just outside the boundary layer, 
w = 1' @dx = - I' L{- a (h,u) + 

0 ax oh,&/ ax 

L{ (hu h,h, ax h,h, 0 

a 
( U - u )  dz) - $lzx im v dz)), 

- z a  
(h' 

(25 ) 
where z has been replaced by 00 in the integrals because it is supposed large 
enough for U - u  and v to vanish. 
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In  (25), the first term is that which alone would be present in the 
irrotational flow around the body. The  rest is the additional outflow due 
to the boundary layer, and is 'as  i f '  there were a source distribution on 
the surface, of strength 

per unit area. I n  many applications, one could usefully consider the 
irrotational flow around the original solid surface as modified by this 
' equivalent source ' distribution. Alternatively, if we wish, we can deduce 
the formula for 6, from it, as in 5 2.2. For ' new ' fluid is created at these 
sources, in the region between streamlines of the irrotational flow with 
y-coordinates y and y + dy, at a rate 

j: m(h, dy)(h, dx) = dy Uh, 6, - 2 lx Uh, 6, dx). (27) 

Hence, if 6, is the thickness of the layer of ' new ' fluid at the point (x ,y ) ,  
then (h, dy)U6, must equal (27), which gives equation (21) for 6,. 

( aY 0 

3.3. Velocity comparison 
The  ' velocity comparison' method has already been described by 

Moore (1953), in general orthogonal coordinates (x ,  y ) .  We therefore 
confine ourselves to an account of the method in the special case when 
external-flow coordinates are used. 

If x = 6,(x,y) is a surface, the irrotational flow about which is the same 
as the flow outside the given boundary layer, then in that irrotational flow 
the boundary condition is 

Hence, for values of z just outside the boundary layer (but small on the scale 
,of the irrotational flow), 

(h,  u>* (29) 
uas 2-6, a (x-6,) = - -l- - - 
h, ax h,h, ax 

Comparing (29) with the actual form (25) of w just outside the boundary 
layer, we obtain (after multiplication by h, h,) a differential equation 

a a a - (Uh, 6,) = - (Uh, 6,) - - (Uh, S,), ax ax aY 
of which equation (21) is the solution such that Uh,6, = 0 at x = 0. 

Moore's application of this method in general surface coordinates (x,  y )  
yields the partial differential equation (written by him in vector form, 
but here translated into scalars) 

"[h,{Ua1- ax lrn 0 ( U - u ) d x } ] +  a[h,{V6,- aY lrn 0 (V-v )dz} ]  = 0, (31)  

but  he does not solve it for 6,. Since the external streamlines are the 
characteristics of equation (3 l), its solution in general must necessarily 
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involve integrating along those streamlines, as was done above. On the 
other hand, there may be particular cases when the geometrically simplest 
choice of coordinates (x, y ), rather than external-flow coordinates, happens 
to give (31) a form whose solution can be spotted without any integration, 
and in such a case Moore’s approach would obviously be better. 

3.4. Mean vorticity 

flow. 
vorticity are 

Finally, we apply the ‘ mean vorticity ’ method to three-dimensional 
On the boundary-layer approximation, the x and y components of 

Integrated across the layer, in external-flow coordinates, these give 

Thus, the mean vortex lines (averaged across the boundary layer) lie along 
the equipotentials x = const. of the external flow. 

If this y-vorticity is now redistributed, by concentrating it in a vortex 
sheet at the mean distance 

= b ,  - - 
- m  (34) 

J -- 7 dz U 
0 

of y-vorticity from the surface, the error is of order (S /1)2  as in 3 2.4, so that 
to the order of approximation required the effect on the external flow is 
unchanged. If there were no x-vorticity we could then argue, as before, 
that we are left simply with the irrotational flow around a surface displaced 
into the fluid through a distance as. 

However, we cannot neglect the streamwise vorticity simply because 
its average across the layer is zero. This means, rather, that it can be 
regarded as made up of small vortex rings, in planes perpendicular to the 
surface equipotentials. From the equivalence of a vortex ring of circulation 
K to a shell of normal doublets, of strength K p e r  unit area, whose boundary 
is the ring, it then follows, as in $2.4, that the streamwise vorticity is 
equivalent to a distribution of doublets with axes in the negative y-direction, 
of strength 

.$ dx = v ( 3 5 )  

per unit volume. 
(8/Z)z, to a surface distribution of doublets of strength 

These doublets are equivalent, with an error of order 

- m  1 v dx = Us, (36) 
0 

per unit area. This distribution of tangential doublets with axes in the 
negative y-direction (geometrically, around equipotentials) is equivalent 
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to  a distribution of sources of strength 

per unit area. 
The induced flow consists, therefore, of the irrotational flow around 

the vortex-sheet, at distance 6, from the surface, supplemented by the 
effect of the sources (37), which may be shown by the methods of $3.2 
to alter the effective displacement thickness from 6, to 

6, = 6, - 2 1: Uh, 6 ,  dx, 
Uh, aY 

in agreement with (21). 
Alternatively, we can deduce from this approach the equivalent source 

distribution (26). For the flow differs from that got by replacing all the 
y-vorticity by equal vorticity at the surface by the velocity field of a 
distribution of doublets with axes in the positive x-direction, of strength 

q d ~ =  U-u (39). J2* 
per unit volume. This is equivalent to  a surface distribution of doublets 
of strength 00 1 ( U - u ) d z =  U6, 

( 1  

per unit area, and this distribution of tangential doublets, with axes in the 
positive x-direction, is equivalent to a distribution of sources of strength 

per unit area, which together with (37) gives the original result (26). 
We may conclude with a remark about the influence of wakes in general, 

three-dimensional flows, in which (as well as in unsteady two-dimensional 
flows) the vorticity integrated across the wake may have a non-zero value 
namely, the trailing vorticity. The method of this section gives that the 
error in the usual theory, in which this vorticity is regarded as concentrated 
into a vortex sheet (which we may take as z = 0, with x,y as orthogonal 
coordinates specifying position on the sheet), is equivalent to the flow 
induced by a surface distribution of sources on z = 0, whose strength 
per unit area is obtained by adding the source strength (26) for the 
'boundary layer ' on one side of the surface z = 0 to the value of (26) for 
the ' boundary layer ' on the other side. 
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